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1. Introduction 

Roger Penrose has, over the years, frequently emphasized the importance of 
the complex numbers for quantum mechanics and in particular that the pure states 
of the simplest quantum system, for example a spin ½ system, make up the points 
of a complex manifold Pt (C) ,  the complex projective line. This is not only a 
complex manifold, diffeomorphic to S 2 but a Riemannian manifold as well. One 
quarter of the standard round metric on S 2 is not only compatible with the com- 
plex structure but plays an essential role in quantum mechanics because the prob- 
ability that a pure state 1¢/I) may be found in a pure state 1¢'2) is given by 
I (¢/21 ~/, ) 12, where 

I (~u2 I¢', ) I =cos d ,  (1.1) 

and where d is the distance along the great circle (measured with respect to this 
rescaled metric) passing through the associated points xt and xz on the two-sphere. 
[Because of the rescaling d cannot exceed n/2 and so the right hand side of ( 1 ) 
is never negative. ] 

By now it has become well known how this picture changes as one passes to 
quantum systems with a large, but finite dimensional Hilbert space .~,',. Pure states 
are associated with rays in .~,, i.e. equivalence classes of vectors I¢') differing by 
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multiplication by a non-vanishing complex number. Choosing a basis [gi) ,  i=  1, 
2 .... , n for ~3~,, in which the components of a representative state are 

IV/) =Zil~',  ) ,  (1.2) 

we see that pure states correspond to equivalence classes of n-tuples of complex 
numbers {Z i} such that {Z i} and {2Z!}, 2~C-{0},  are identified. This is just the 
standard definition of complex projective ( n -  1 )-space P,,_ I(C). Moreover we 
may endow P,,_I (C) with a Riemannian metric compatible with the complex 
structure which determines quantum-mechanical transition probabilities in just 
the same way as it does in the case of P~ (C). In fact since any two pure states 
[ ~ut ) and I ~//2 ) may be joined by a complex projective line in P,,_ ~ (C) we need 
only repeat the previous construction and use formula ( 1.1 ). The result is called 
the Fubini-Study metric on P,,_ ~ (C). 

What appears to be slightly less well known is how to treat a general mixed state 
from this geometrical point of view. The obvious and correct guess is that one 
should use a sort of probability distribution on P,, (C). In this article I shall show 
how this is done. In fact little of what I have to say can be described as new but it 
is not easy to find a description using the notation and ideas familiar to most 
physicists - Dirac's bras and kets for quantum mechanics and the standard if 
somewhat old fashioned index notation used in General Relativity. Another of 
Roger's persistent, if minor, themes has been the importance of adopting a serv- 
iceable, standard and familiar notation which, despite the shifts of mathematical 
fashion, allows the immediate recognition of the nature, tensorial or otherwise, 
of the objects one is using. 

More substantial reasons for spelling out these ideas are their possible appli- 
cation to quantum cosmology, which first prompted me to work out the details 
[ 1 ], and because, having set up the formalism, it suggests natural generalizations 
(which I shall only hint at here) taking us beyond conventional quantum me- 
chanics. This again is not a new idea but in view of the intimate relationship 
between quantum mechanics, Riemannian geometry, Hamiltonian, symplectic 
and complex geometry which show up here - mainly in the guise of K~ihler ge- 
ometry - it seems worth making the point again. 

The restriction to finite dimensional Hilbert spaces does not seem to me to be 
a serious physical limitation since I find it difficult to believe that there is a phys- 
ical distinction between using a finite but large dimensional Hilbert space and an 
infinite dimensional one. Of course mathematically the latter is usually much 
more convenient despite the fact that it also introduces the familiar problem of 
ultraviolet divergences of quantum field theories as well as the rather less familiar 
but, I believe, equally serious infrared divergences that one encounters when at- 
tempting to discuss infinitely large universes, as one does in quantum cosmology. 
In that context one encounters the problem that wave functions of the universe 
are not normalizable because of their behaviour for large scale factor. In fact there 



G. W. Gibbons / Typical states and densiO, matrices 149 

are even reasons for preferring a truly discrete version of quantum mechanics in 
which the total number of allowed quantum states is finite. In such a theory no 
divergence should possibly occur. This would take us away from complex Hilbert 
spaces of course. A different reason for not using complex Hilbert spaces in quan- 
tum cosmology is the intimate relation between the complex numbers and the 
notion of time evolution in quantum mechanics. If the evolution of the wave 
function is non-unitary, for example, or if the allowed wave functions of the en- 
tire universe must all be real because they should not provide a direction of time, 
or if there is no global notion of time at all, then the need for the complex num- 
bers at a truly fundamental level might be lost. 

2. The Fubini-Study metric 

The Hilbert space ~,,, carries a natural flat Hermitian metric: 

< d~,l d~'> = <~'~ l~tj> dZrdZ j • (2.1) 

If the basis { I~'i> } is orthonormal this becomes 

dZ, d Z ' ,  (2.2) 

where I adopt the notation in C" that an unbarred index on a barred quantity has 
been raised or lowered using the flat metric 

c~O = < ~ l ~uj >. (2.3) 

Restricted to states of unit norm, < ~'1 ~'> = 1, leads to 2~Z~= 1; this is the ca- 
nonical unit round metric on S z''-I. We may view S 2''- I as a circle bundle over 
P,,_ ~ (C) by associating each normalized bra I ~u> with its equivalence class under 
I ~'> ~ei"l  ~'>. This gives us the Hopf  fibration. The map, which moves points 
along the fibres, I~'> --'ei" I ~u>, is an isometry of the round metric and so we may 
define the distance between two nearby pure states as the perpendicular distance 
between their associated fibres. Thus, if 1~> is normalized, 

1 
ld~u>- ~ (<~uld~u>- <d~/l~,>) I~> (2.4) 

is perpendicular to the fibres and thus the Fubini-Study metric is 

<dg/[ dg/> - ~ I < q/Idg:> - < dg/[ g/> 12 . (2.5) 

To obtain an explicit expression in terms of local coordinates x% a =  1, 2 .... , 
2 n - 2 ,  on P,_t  (C) we pick a local section of the circle bundle over P,,-L (C), 
which means in practical terms parameterizing our normalized states 1~/> as 

I~> =e~#l ~'o(X") > ,  
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where the phase of I~to(X ") > is fixed by some convention. The Fubini-Study 
metric (2.5) is then easily seen to be independent of the phase fl and depends 
only on the 2 n - 2  coordinates x ". I f g ,  p is the metric then 

g.p dx" dxa=  < dV/o I d~'o > -¼1 < ~Uo I d~'o > -  < d~'o I ~'o > 12 • 

In what follows we shall not need to use any particular coordinate system on 
P._~(C) and our results will be independent of  any such choice. For concrete- 
ness, however, the reader may have in mind the case n = 2, which we may para- 
meterize as 

i J  ei~/Zcos 012 "~ 
Igt) = e  ~,e_iO/2si n 0 / 2 ] '  

where x'~= (0, ~) and (2.5) becomes ~ (d02+sin20 d02). This is just ~ the stan- 
dard round metric on S 2. The case n = 3 may be found worked out in detail in 
refs. [2,3]. It is the case that the Fubini-Study metric is Einstein and so the case 
n = 3 (spin 1 ) may also be regarded as a gravitational instanton. It may also be 
amusing for relativists to note that, since P,,_ ~(C ) admits an obvious SU (2) ac- 
tion (acting linearly on Z ~ and Z 2 ) and an obvious SO ( 3 ) action (acting linearly 
on Z ~, Z z, Z 3 ), the Fubini-Study metric may be cast in Bianchi-IX form in two 
distinct ways: in the former case with 2 invariant directions equal and in the latter 
case with all 3 invariant directions unequal. 

3. Observables and density matrices 

A physical observable O is associated with a self-adjoint operator 0 and 3fC,, and 
the set of such observables form a real n 2 dimensional vector space if we include 
the unit observable [. Such observables determine and are determined by their 
diagonal matrix elements, which are real-valued functions O(x  ~) on P,,_ ~(C). 
Explicitly 

O(x) = < ~](x) I O[ ~,(x) ) . (3.1) 

Note that not every real-valued function on P ,_  ~ (C) is an observable. 
Mixed states are associated with density matrices $ which are positive semi- 

definite observables. Thus they determine a non-negative function p(x) ,  which 
we may interpret as a probability density giving the probability that the system is 
in the pure state I~(x)  >. We may use p (x)  to calculate the expectation value Op 
of any observable 0 in the mixed state ~. The usual formula is 

Op = T r ( ¢ $ ) / T r / ~ .  (3.2) 

We shall translate the right hand side of (3.2) into an integral over P,,_ ~(C), 
using the Gaussian integral 
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f d,,Yd,,Y(yiyjyrys) exp(_ly]2 , r s r s )=~ (6,a;+6~6;). 
Cn 

(3.3) 

Equation (3.3) may be obtained by differentiating twice the expression 

I d"Yd"I?  exp ( - I Y l Z + f Y i + j k y k ) = r C "  exp a~J' (3.4) 
Cn 

with respect to a~ and jk. 
If A)  and BSi are the components of two self-adjoint operators A and/~ in the 

orthonormal basis I ~'~) they determine two real-valued functions A (x) and B (x) 
on P,,-i (C) by 

A(x) = <~IAI w) =ZASZJ (3.5) 

and similarly for/~, where Z j are the components of the normalized ket I~) .  The 
ket rl ~u) is unnormalized and has components Y~=rZ ~ which range over all of 
C". The volume element on C" in (3.3) may be written as 

d"Yd"Y=r z'-I dr d.Q2,,_ l , (3.6) 

where dO2,,_ ~ is the canonical Riemannian volume element on S 2"- ~ with its 
round metric of unit radius. This latter volume element is related to that on 
P,,-i (C), x/~ d2"-Zx, by 

d-Q2,,_ 1 = d f l  x / /g  d 2 " - E x  • (3.7) 

We can now substitute (3.5), (3.6) and (3.7) in (3.3) to obtain the following 
identity: 

T r A / ~ + T r A T r B =  ( n + l ) !  I A(x)B(x)v/gd2"-2x" (3.8) ~n- -  1 
Pn-I (C) 

Equation (3.8) contains all the information we need to translate the standard 
formalism into Riemannian geometric language on P ,_  t (C). Setting A = /3=  I t he  
left hand side becomes n + n 2. The result is a formula for the volume V of P,_  t (C)  

with its Fubini-Study metric: 

V = ~ " - ' / ( n - l  )!. (3.9) 

If n = 2  we have V=:t; if n=3 ,  V=~2/2. I f / ~ = / w e  obtain 

n! f A(x)x/gd2"-2x" (3.10) T r A -  n,,-t  
P ~ - t ( c )  

Consider now a normalized density matrix/~, 

Tr/~= 1. (3.11) 
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The expectation value of an observable 0 in the state/~ is given by 

( Op- 7r,,_ ~ p(x)-  ( n + l )  
P,)-I(C) 

We may interpret (3.12 ) as meaning that a density matrix p(x)  corresponds to a 
sort of probability density P(x) on P,,_ ~(C ) given by 

p ( x ) _ n ( n + l ) (  I ) 
p(x) ( n + l )  " (3.13) 

In the special case that/~= ( 1/n)[,  the totally mixed state of local ignorance in 
which no particular pure state is favoured, we found 

P=I/V, (3.14) 

and thus points on P,,_ ~ (C) are populated with equal probability in this state. In 
ref. [ 1 ] such states were referred to as "typical". Note that the second term in 
(3.9) may be discarded if we only consider observables 0 which are trace free, 
i.e., which are orthogonal in the metric Tr (0~ 02 ). If we do not make this restric- 
tion we find that the probability densities given by (3.13) need not be every- 
where positive, though p(x) always is. In fact, the probability density P(x) is to 
some extent ill defined since the set of observables is finite dimensional and 
spanned by n2 operators hij, 

nij = ½ (I~u,) (g"~ I + I ~ j ) < ~ l ) ,  

determining n 2 functions zt~i(x) on P,,_ ~ (C). We could add to the right hand side 
of (3.13) any function f (x)  on P,,_ t(C) which is orthogonal to the zrij's, i.e., 
which satisfies 

f(x)nij(x)x/~d2"-2x=O, i= 1, 2, ..., n .  
Pn-t(C) 

Another unusual feature of the probability distribution is of course that, even 
if we know for certain that the system is in a particular state I ~vt > say, the asso- 
ciated probability distribution x~ (x) is non-zero almost everywhere on P,,_ t (C); 
it vanishes only on states which are orthogonal to I ~1 >, which is a submanifold 
of co-dimension 2, isomorphic to P._2(C). 

4. Poisson structure and evolution 

The set of  observables, {0},  may be thought of  as a subspace of  the set of  all 
functions on P,,_ 1 (C), spanned, for example, by the n 2 functions 

nij= (~ul 7t,j Ig,') (4.1) 
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with 

~ij = ½ ( I ~ll, ) ( ~lj l °1-I~lj) ( ~li l ) ~. ~ji . (4.2) 

More geometrically we may think of the observables as the direct sum of the 
constant function and the lowest non-trivial eigenspace of the Laplacian acting 
on scalars associated to the Fubini-Study metric on P,,_, (C). We may endow {0} 
with two important algebraic structures. The first is the commutative Jordan 
product 

(A,  1~) - , A . B = B . A =  ½ (AI~+ B A )  . (4.3) 

The second is the anticommutative Lie product or commutator 

1 [ j , / ~ l  = 1 (4,/~)--+ ~ ~ (A/~-/~A) . (4.4) 

The latter product is the more interesting one here since it may be extended to 
all functions on P,,_ 1 (C), not just the observables, and it endows P,,_, (C) with a 
Poisson structure which is compatible with its complex and metric structure, the 
result being that P,,_ ~ (C) is a K~ihler manifold. The general picture is rather well 
known. What I want to discuss in detail here is how it applies to the time evolu- 
tion of both pure states and mixed states. The main point is that we may interpret 
the Schr/Sdinger equation, 

i dl q / ) /d t=/~l  g t ) ,  (4.5) 

as Hamilton's equations on P,,_ ~ (C) with Hamiltonian function 

H ( x )  = (gt(x) I gl  ~u(x) ) ,  (4.6) 

and the Heisenberg equation of motion for a general density matrix, 

1 
_ i [ / 5 , ~ ] ,  ( 4 . 7 )  

dt 

becomes the Liouville equation 

d p l d t = { p ,  H }  , (4.8) 

where {, } is the Poisson bracket. Thus from a purely formal point of view, set- 
ting aside questions of interpretation, the quantum and classical theories may be 
cast into an identical form! 

The easiest route to these results is the symplectic quotient construction of 
Marsden and Weinstein extended to the Kiihler case (see, e.g., ref. [4] ). The flat 
metric on C" given by (2.1), 

d s 2 = d Y  'n d Y "  ~m,, , (4.9) 

is manifestly K~ihler, i.e., 
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with K~ihler potential 

and symplectic form 

02K 
ds2= d l  7" dY n (4.10) 

017m 0Y" 

K ( Y ,  Y ) = Y , , , Y "  (4.11) 

o9= ½i dym ^ d]?,,,. (4.12) 

We may therefore define the Poisson bracket of two real-valued functions F and 
G by 

{ F , G } = i (  0~,,, 0G OF 00_~,,, ) 
0Y" OY 'n " (4.13) 

Now the holomorphic map 

Y m - - , e i " y "  (4.14) 

is both an isometry of the flat metric and a canonical transformation with respect 
to the Poisson structure given by (4.13 ). It is generated by the function 

O = - - Y m  Ym , (4.15) 

since (4.1 4) corresponds to moving along the integral curves of the equation 

d Y i / d o t = i y i = { Y  i, O}. (4.16) 

The Marsden-Weinstein construction in the present case consists of restricting 
attention to a level set of the moment  map O, e.g., 

O = - I ,  (4.17) 

and identifying points under the U(  1 ) action (4.14). If F and G are two func- 
tions invariant under (4.14) (which is of course just the Hopf  map we used ear- 
lier) we may consider them as functions on P~_ ~(C), by restricting them to the 
level set given by (4.17 ), and take the Poisson bracket to be given by the restric- 
tion of (4.13 ). Since the action is both holomorphic and isometric it is not diffi- 
cult to check that the resulting structure obtained on P ,_  i (C) is also K~ihler. 

In the particular case that F a n d  G arise from self-adjoint operators/0and ~ on 
/am in the manner given by ( 3.5 ), i.e., 

F =  ]?mF"sY  s , (4.18) 

G = Y , , , G % Y  ~ , (4.19) 

one sees from (4.13) that 

i{F, G}= <~1 [P, 0] I~> • (4.20) 
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Equation (4.20) demonstrates the isomorphism between the Poisson algebra of 
observables on P,,_ t (C) and the Lie algebra of self-adjoint operators on ~,,. 

Taking the expectation value of the Heisenberg equation (4.7) now immedi- 
ately yields [on use of (4.2) ], the Liouville equation (4.8). To obtain the Ham- 
ilton equation on Pn- i (C) ,  

d x a / d t = { x  a, H} , (4.21) 

from the Schr6dinger equation (4.5) we expand (4.5) in a basis to yield 

i dY'n/dt=HmsYS, (4.22) 

where H"s are the matrix elements o f ~  in an orthonormal basis, 

H " s =  (~',n I ~1 ~u~). (4.23) 

Using the definition of the Poisson bracket (4.13 ) we may rewrite (4.22) as 

dYm/d t={ym,  n}  . (4.24) 

Equation (4.24) is in Hamiltonian form. It preserves the normalization con- 
dition (4.17 ) and commutes with the Hopf fibration and so it may pushed down 
to P,,_ t(C) yielding (4.21). 

The Hamiltonian vector field H a associated to the Hamiltonian function H, 

Ha= o9ap OH/Ox a ' (4.25) 

is a holomorphic Killing vector field of the Fubini-Study metric gap and hence it 
generates an isometry of this metric [in fact a one-parameter subgroup of 
SU ( n ) / Z ,  ]. This guarantees that the transition probability given by ( 1.1 ) re- 
mains constant in time, since the distance d between two pure states I~i)  and 
I g/2) evolved with the same Hamiltonian H(x)  must remain constant since iso- 
metries preserve the Riemannian volume element x/g d2"- 2x or equivalently o9"/ 
n!, where 09 is the symplectic two-form. The Hamiltonian flow generated by the 
function H ( x )  of the form (4.6) will preserve the expectation values given by 
( 3.12 ) and evolved using Liouville's equation (4.8). 

The fact that the isometries of P,_ I(C) with its Fubini-Study metric can be 
lifted to C" as unitary or anti-unitary transformations is known to physicists as 
Wigner's Theorem. These isometries will, in general, have fixed points. In the 
case of Hamilton's equations the fixed points are called stationary states and cor- 
respond to critical points of the Hamiltonian, i.e., points for which 

OH/Ox a= 0.  (4.26) 

This statement is just the variational principle for the energy eigenvalues Ek, k=  1, 
2 .... , n. In the case that the eigenvalues are all distinct we can list them in increas- 
ing order El <E2 < .-. <E,,. The Morse index p. of the critical point associated to 
Ek is easily seen to be 2 ( n - k )  and so using H as a Morse function we can calcu- 
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late the Euler number X of P,,_ ~ (C) as 

2n--  2 n 

X = y' n p ( - 1 ) P =  ~ ( - 1 ) 2 c " - k ~ = n ,  (4.27) 
p = 0  k= I 

where np is the number of critical points of Morse index p. 
The Hamiltonian as opposed to the complex or Riemannian geometry of the 

space of pure states is not as well known as it might be. It is, however, sometimes 
used without people realizing the fact. An example of this is provided by the Hol- 
stein-Primakoff transformation often used to discuss spin systems. Roughly 
speaking this corresponds to using a Darboux or canonical coordinate system for 
S 2 rather than a complex coordinate system. Cartographically speaking the dis- 
tinction is that between Lambert's "Polar Zenithal Equal Area projection" and 
the more usual stereographic "Polar Zenithal Equal Angle projection". Since a 
full exposition is slightly involved I shall defer a detailed consideration to some 
other occasion. 

5. Time and the complex numbers 

Much of the basis structure of quantum mechanics is projective geometry, aug- 
mented with an appropriate metric with which to construct transition probabili- 
ties. As such it could be over almost any field. In particular one could, and people 
do, imagine quantum mechanics over ~, the real numbers, C, the complex num- 
bers, and H, the quaternions. A more novel idea is to consider discrete quantum 
mechanics over a finite field, for example, a Galois field of characteristic p. This 
would have the consequence that a finite dimensional quantum system, i.e., one 
with a finite dimensional Hilbert space, would have a finite number of quantum 
states rather than an infinite number, as for example with Pn- ~ (C), which seems 
more intuitively appealing. A problem with discrete quantum mechanics is, how- 
ever, the introduction of real-valued probabilities, which presumably only emerge 
in the limit that the characteristic p tends to infinity. 

The choice of field is closely related to the concept of time. A discrete field 
presumably entails a discrete time variable. On the other hand, a real field seems 
to allow no time evolution at all. The real projective spaces P,_, (~) have a met- 
ric structure but no symplectic structure, compatible with the metric. If they did 
they would have an almost complex structure, but since P,,_, (R) =S"-m/_+ 1 and 
the only spheres to admit an almost complex structure are S 2 and S 6, neither of 
which descends to P,,_ m (~), we are led to a contradiction. 

In fact, real quantum mechanics usually arises when one considers time-rever- 
sal invariant systems. In Hamiltonian mechanics a time-reversing transforma- 
tion is anticanonical or antisymplectic: it reverses the sign of the symplectic form. 
In conventional quantum mechanics time reversal is effected by an antiholo- 



G. IV. Gibbons / Typical states and density matrices 157 

morphic isometry on P,_t  (C), which lifts to an anti-unitary map on ~(e. Thus 
the two concepts agree for the case of Kiihler geometry. Time reversal is usually 
thought of as an involution of order 2 on the space of quantum states. If it lifts to 
an involution of order 2 on ~,, one may, by appropriate choice of basis, regard it 
as complex conjugation of the homogeneous complex coordinates Z i. If the Ham- 
iltonian is invariant under time reversal then the critical points or stationary states 
may be taken to lie in the real projective subspace P,,_j (R). In an appropriate 
basis the Hamiltonian is real and symmetric. Thus, in the familiar spin ½ exam- 
ple, if 

~=~B.~r, (5.1) 

where B= (0, 0, B) and ai are the Pauli matrices, the two stationary states are 
I~r ) = (~) and I ~  ) = (o) and in this basis 

~ =  (/z0B _0/IB). (5.2) 

We have that Pj (R) is the meridian ¢=0.  The Hamiltonian flow generated by 
( 5.1 ) is along the small circles of fixed latitude. The only trajectories to lie in this 
real subspace are the stationary states themselves; in other words, the only real 
states are stationary states. These are also the only states which are strictly time- 
reversal invariant for all time in the sense that 

I~(t)  )*=21 ~u(t) > (5.3) 

for some 2 e C -  {0}. 
On the other hand, we might demand that the evolution backwards in time is 

the same as forwards in time: 

I ~u(t) ) *=  v l ~ ( - t )  > (5.4) 

for some v e C -  {0}. If 

ae - itot ~ 
I~(t) >=\be +iO,, ] (5.5) 

with 09 = #B, we can satisfy ( 5.4 ) by setting a6= ba. The set of such allowed states 
are precisely those lying on the meridian ¢ = 0, in other words, it is parameterized 
by the real projective line P~ (R). 

The situation described above generalizes for all n provided the time-reversing 
involution of order 2 on P,_ ~ (C) lifts to an anti-unitary involution of order 2 on 
~ .  Thus, for example, for a spin 1 system with time-reversal invariant Hamilto- 
nian the time-reversal invariant states in the sense of (5.4) are parameterized by 
points on the real projective plane, P2 (R). It may happen that the time-reversing 
involution on P,,_ ,(R) that commutes with the Hamiltonian lifts to an involu- 
tion of order 4 on 0~,,. The result is quaternionic quantum mechanics. This situa- 
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tion is most frequently encountered when dealing with systems with odd spin s. 
Since the theory involves two-component SU (2) spinors ~As...~ with 2s= n - 1  
totally symmetric indices, it is perhaps worth recalling in detail on this festive 
occasion. The SU (2) invariant metric 6.4.s and the symplectic form e ~s allow one 
to construct an SU (2)-invariant map J from ~ to its complex conjugate space 
H,  using the SU (2)-invariant tensor 

J~.  =¢Acf f~ .  c . (5.6) 

The crucial property of J:~, is that 

A ~,,4' J . ~ . J s  = - d ~ ,  (5.7) 

where ,f~ is the complex conjugate of J~. and ~ is the Kronecker delta. 
We may now associate, in an SU (2)-invariant way, with every SU (2) spinor 

~,As...~-~; its time-reversed spinor 

~s ~~; i ~  r s  (5 .8 )  ( J ~ )  ' =-,:~,-,s .... j~,  ~p.4.s,...a', 

where ~p.~.B....~. is the complex conjugate of ~An...a. If the spin s =  ½ ( n -  t ) is a 
half integer, that is, if the number of indices on the spinor ~A,...c is odd, the map 
defined by (5.8) is, because of (5.6), of  order 4. In fact, regarding ~_,k as ~4k, j 
is a real linear map satisfying 

j 2 =  - i d .  (5.9) 

Moreover multiplication by the square root of - 1 may also be regarded as a real 
linear map on ~4k, which we represent as I. Clearly 

IZ= - i d .  (5.10) 

Because the action of J involves complex conjugation, the action of  I and J 
anticommute: 

I J =  - J I  . 

If we define a third real linear map Kon  ~4k by 

H = K  , 

it follows from (5.9), (5.10) and (5.11 ) that 

K 2 = - id ,  

J K = I =  - K  J ,  

K I = J =  - I K .  

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

Thus we have an action o f t h e  quaternions H on ~4k, and we may regard ~_,k as 
a quaternionic vector space and the Hamiltonians  which are are invariant under 
time reversal defined by (5 .8 )  (and which are rotationally invariant)  may be 
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regarded as quaternion-valued Hermitian matrices. 
It is not possible to find states which are equal to their time-reversed state if 

one uses (5.8), because of  (5.9). The proper analogue of complex conjugation is 
now quaternionic conjugation. The states which are proportional to their quater- 
nionic conjugate lie in a real ( k - l )  dimensional projective subspace Pk-I (~)  
c P_,~_, (C). The lowest non-trivial case is k =  2, n = 4 or spin s =  I. 

A quantum cosmological application of these ideas (at least in the simpler case 
when time evolution is represented by complex conjugation) arises when one 
tries to quantize quantum fields in spacetimes, like for example the Schwarz- 
schild or De Sitter spacetimes, in which spacetime events related by a time-re- 
versing isometry of the spacetime metric are identified (the so called "elliptic" 
interpretation). One way of  expressing the difficulties one encounters is to say 
that one is forced to adopt a real quantum-mechanical Hilbert space [ 5 ]. It is 
possible that the more complicated situation involving the quaternions might arise 
if one was to consider fermions in quantum cosmology as one must, for example, 
if one is considering supergravity theories. 

6. Generalizations 

The basic set up described above admits some obvious generalizations, some 
of which have certainly already been proposed in the literature. Roughly speaking 
they may be classified into conservative and radical: 

In the conservative case, Pn- , (C  ) is retained as the state space and merely the 
dynamics is altered so that the evolution is non-linear and non-unitary whether 
it operates on pure states (as in the proposal of Kibble [6 ], for example) or on 
density matrices (as in the proposal of Hawking [ 7 ] ). 

In the radical case, Pn- t (C) is abandoned and a different state space, Pn_ t (~)  
or Pn_, (H), is considered as in real or quaternionic quantum mechanics, or even 
more radically the underlying linear structure of projective geometry is aban- 
doned altogether and P~_,(C) is replaced by a more general class of K~ihler 
manifolds. 

I must admit I find the radical proposal by far the more attractive but it seems 
to encounter a number of  difficulties. These relate to questions such as what is an 
appropriate choice of observables? The lowest non-trivial eigenspace of  the La- 
placian, for example, would in general be just one dimensional and even if it were 
not it is not likely to generate holomorphic isometries. Another difficulty is how 
to treat composite systems. Rather than pursue this theme in extenso I will close 
by making a few unsystematic remarks about possible generalizations of this sort. 
My main aim, however, in this article was to explain how to incorporate mixed 
states in the conventional picture in a perhaps slightly unconventional but I hope 
useful way. 
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7. Superscattering operators 

One generalization of  conventional quantum mechanics is to replace unitary 
time evolution, which takes pure states to pure states, by an evolution law which 
can take pure states to mixed states. This may arise as an approximation to some 
underlying and more complicated unitary evolution (as in irreversible thermo- 
dynamics) or may be taken as a fundamental modification of  quantum mechan- 
ics forced on us by quantum gravitational effects associated with event horizons 
for example. In both approaches one invokes the action of a linear map $. which 
takes density matrices to density matrices and which leaves invariant the unit 
density matrix, 

$[=[. (7.1) 

The infinitesimal form of this evolution is a master equation, which may be writ- 
ten on P,,_, (C) as 

dp / dt = ~[p , ( 7.2 ) 

where the vector field M "  0/&x" must preserve phase space volume, i.e., be di- 
vergence free, 

1 0 - 
\ /gOx (x/g ?~I'~) = 0 (7.3) 

Page [8 ] and Wald [9 ] have pointed out, in the quantum gravity context, and 
other people more generally, that demanding strict time reversibility leads to the 
result that the evolution must in fact be unitary. In the present context this means 
that the vector field M "  in (7.2) must be a holomorphic Killing vector of  the 
Fubini-Study metric. It would be interesting to understand this result in a more 
geometrical way. The natural way to go about this would be to consider how the 
pure states form the boundary of  the convex set of  mixed states. Geometrically 
this is related to the Veronese embedding of projective spaces. 

8. Composite systems 

Some of the most mysterious features of  quantum mechanics arise when one 
considers composite systems obtained by combining two systems with Hilbert 
space ~ ,  and M,,, of  dimension n and m, respectively. The combined Hilbert space 
is taken as the tensor product M,,× 9g,,, and the associated space of  states is 
P,,,,-k (C), which has a much larger dimension than that of  the cartesian product 
P,_ ~ (C) × P,,,_, (C) of  the two individual state spaces, which has only dimension 
n + m -  2. The missing information is of course contained in the ( n -  I ) ( m -  l ) 
relative phases, which have no analogue in the combination of  two purely classi- 
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cal phase spaces. 
The fact that products of  projective spaces admit an embedding of this sort, 

called by algebraic geometers the Segre embedding, seems to be very special. If 
one wished to generalize quantum mechanics by passing to more general compact 
Kiihler manifolds, for example, one would, if one wished to consider composite 
systems, need some analogue of the Segre embedding. 

A related but rather simpler problem arises if one wishes to generalize the idea 
of the "Berry phase", i.e., to consider a circle bundle over one space of states 
which carries information about the overall phase of  the system, which is irrele- 
vant for an isolated system but which comes into play when one couples the sys- 
tem to some part of its environment. One might require that the Kiihler form 
serve as the curvature of the line bundle, which will impose integrality conditions 
on the K~ihler form making the manifold one of Hodge type. It then follows from 
a celebrated theorem of Kodaira that the Kiihler manifold admits an embedding 
into some projective space. Since the result from this embedding is algebraic this 
might be taken to suggest that passing to a compact Hodge manifold is like con- 
sidering a constrained set of  conventional quantum states. 

9. Second quantization 

Since the space of states may be viewed as a classical phase space one might ask 
what happens if one proceeds to quantize this classical phase space using the ideas 
of geometric quantization. In general this will lead to a different, but still finite 
dimensional, quantum-mechanical Hilbert space. These Hilbert spaces will carry 
representations of U (n). By choosing the fundamental representation one has 
the situation where second quantization yields the first quantized Hilbert space. 
If one does not make that choice one has the possibility of: 

10. Third quantization 

and so on. 
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